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1. Introduction

Interparticle Coulombic Electron Capture (ICEC) is an environment enabled process that involves an electron being
captured by an atom, a molecule or a quantum dot [1]. When the electron is captured, the excess energy is released
leading to the ionization or excitation of a nearby particle. Here, we focus on ionization:

A*+B +e > A +Bt+e

Two mechanisms contribute to the overall ICEC
process: (a) virtual photon exchange: an electron is
captured from the continuum and a virtual photon is
exchanged; (b) electron transfer: the environment (a
neighbouring atom or molecule) provides the
electron (i.e. no capture of the projectile electron @)
takes place).

FREEE

ICEC was first predicted in 2009 [2] and can lead to cross sections that are significantly larger than those for
conventional photorecombination.

2. Systems investigated

We studied [3] ICEC for: We investigated the dependence of the cross section for

ICEC-P: ICEC and each mechanism on the inter-neighbour
: distance R between acceptor and neighbour for two
relative orientations: Q
H* e H,0 +e > H ¢ H,0" +e
H20H """"ﬁ"““"""‘»‘J
ICEC-W: -
HH20 O

H e H,0* +e > H* e H,0 +e

3. Target states

The ICEC cross sections (see right) are strongly dependent on the distance between electron acceptor and neighbour.
We modelled states of H* + H,0 and H + H,0* up 18 eV for a range of distances R.
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4, R-Matrix Method and model

The R-Matrix method solves the time independent Schrodinger equation by splitting the problem into two regions,
separated by a sphere of radius a. Here, the UKRMol+ [4] suite of codes is used. The inner region multi-electronic
scattering (N + 1) wavefunction can be expanded using the Close-Coupling approximation:

N+1 _ N+1
PV =AY + X bid;
a;j,b; = Expansion coefficients obtained from the diagonalization of the N+1 Hamiltonian.
= N-electron target electronic wavefunction.
= Continuum orbital.

(],’)]’-V“ = I? functions built from occupied and virtual orbitals (VOs). Used to describe polarization effects.

A complete active space consisting of 9 active orbitals and 8 active electrons and HF orbitals generated with the cc-
pVDZ basis set were used for the target. The close-coupling included 20 target states. The continuum contained BTOs
only with the parameters presented below.

a=20a, No. BTOs: 20 No. partial waves:6 | BTO order: 6 1/2-el Legendre expansion: 85/30

6. R-dependence

The asymptotic formula [2] models the virtual
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Figure 4: R dependence of the electron transfer and virtual photon
exchange cross sections for 2 eV and both orientations.
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* Approximate separation (neglecting le+10 T 1 T
interference) of the mechanisms in R- S HZOH HHQO R=4
. . e+08 |- - = 8
matrix calculations enables the LZ
evaluation of a virtual photon exchange 1e+06 | N ifé i

and an electron transfer cross section.

¢ AsR N, electron transfer increases faster
than virtual photon exchange

¢ Electron transfer dominates for R < 6

¢ Electron transfer more effective if H* is
on the H end of H20 (HH20)

* Geometry effect larger for larger R:
strong effect on electron transfer when
R 71, much smaller on photon exchange
forallR

¢ InICEC-W ratios are all > 1
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Figure 2: Ratio of the virtual photon exchange and electron transfer
cross sections for ICEC-P for both relative orientations for the acceptor-
neighbour distances , in A , indicated in the panels.
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Figure 3: Cross sections for virtual photon exchange (P), electron transfer (E) and ‘total’ ICEC (T) for R=8 A (left) and R=3 A
(right) for both orientations: H2OH (solid line(), HH20 (dashed line)

7. Resonances

Many resonances are seen in the ICEC cross section, mainly associated to Rydberg states of H,0. We identified [6]
two 2A; and two 2A, resonances with a strong dependence on R at approximately the same energy for ICEC-P and
ICEC-W and both orientations. v

R-dependence indicates partial ion-pair character
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8. Conclusions

* Both virtual photon exchange and electron transfer are sensitive to the energetics of the system.

* The electron transfer mechanism is significant for a range of acceptor-neighbour distances and makes the largest
contribution to the ICEC cross section at smaller R

* The magnitude of the electron transfer cross section depends strongly on the relative position of acceptor and
neighbour. The photon transfer cross section t is fairly insensitive to it.

* Although the orientation dependence of the electron transfer is stronger for larger R, its smaller contribution
to ICEC means the ICEC cross section is more orientation dependent for small R.

* The difference between the asymptotic cross section and the ab initio cross section is due almost completely to
the electron transfer process.

* The electron transfer mechanism doesn’t change the spin of the target whereas virtual photon exchange does.
This points at a potential way of establishing experimentally whether virtual photon exchange takes place.

* Arich resonance spectrum is visible in the ICEC cross section, including resonances with ion-pair character that
deserve further investigation.
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